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Week 4
Over-constrained systems

Displacement-stiffness method
Thermal effects
Saint-Venant’s principle
Stress concentration
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W s Y Statically indeterminate

32 mm diameter > 600 mm ba rs
26 kN 26 kN
B X
N
Statically indeterminate system: A system for
’ 400 mm which the (expressed
50 mm dismeter ™ in terms of stresses)
C v
v; Some of the loads or supports are redundant

to maintain equilibrium

There are fewer (non trivial) equations of
static equilibrium available than there are
unknown reactions.

B ME-231B / STRUCTURAL MECHANICS FOR SV




=Pr

B ME-231B / STRUCTURAL MECHANICS FOR SV

L Approach to solve statically indeterminate
systems

>

=

Equilibrium: Make use of the fact that equilibrium
conditions have to be assured both globally and locally

Constitutive: Hooke’s law must be obeyed by all materials
of the system.

Kinematic and compatibility: The solution must be
compatible with the geometric restraints at the boundary as
well as among deformed parts of the body

w
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@ K, @ K, @ stiffness of bar:
—»P AE [
| k= The Displacement
i Stiffness Method
©) ®
T 1 v In the displacement method, one
: 3y postulates a specific displacement
- T and calculates the forces that are
® ) required to obtain that displacement.
Using equilibrium at each node gives
NG us the reaction forces
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The Displacement
Stiffness Method

Q

o

C & @ %

—_—

. Determine the number of redundants and identify the nodes

. Separate the structure in sections with nodes on each side

. Postulate a nodal displacement u; for each node i and calculate for each node
the force that must be acting f;

. Calculate the local stiffness matrix for each segment

. Calculate the global stiffness matrix from the local matrices

. Enter the boundary conditions and known loads

. Solve for the remaining unknowns

(3}
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32 mm diameter

26 kN
B

50 mm diameter

400 mm

Example

A polystyrene bar consisting of two cylindrical portions AB
and BC is restrained at both ends and supports two 26 kN
loads as shown in Fig- ure 2.35. Knowing that E is 3.1 GPa,
determine the reactions at A and C

Given: Dimensions of and loading on composite polystyrene
bar.

Find: Reactions and normal stresses.

Assume: Hooke’s law applies. Neglect weight of polystyrene
cylinders.

(-2}
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£PFL - Thermal effects

Materials expand with an increase in temperature: this is called a thermal strain
er = a(T — Tp) = aAT

a is the coefficient of (linear) thermal expansion. It has a dimension of
(mm/mm)/°C or °C-

If the material body is constrained, the thermal strain will result in a thermal
stress:

or = FEa(AT)

Thermal stresses and strains can be super-

positioned with normal stresses and strains
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Stress concentration
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- V ’ I Saint-Venant’s principle

b/4 b/2 b
AAAALY7 Forces in reality are rarely distributed
uniformly across their surface of action
2.75 1.387 , e
< b Tav o ALLAL Saint-Venant’s Principle states that the
1.027 o, manner of force application only plays a role
Dotted line represents value of 0,,, calculated near the pomt of force appllcatlon

For a bar loaded with a point load we can
show that the normal stresses are nearly
uniform on a surface whose distance from
the applied force is the same as the width of
the body.

f using our old friend o, = P/A.
P
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=PFL  Stress concentration

The analogy to fluid flow rates

= Stress concentration can be thought of in similar terms as the flow speed in a
fluid when it get’s to an area with reduced cross section

PR S s o,
= Stone with water flowing around is analogue to a bar with a hole in it

= water flowing between two stones is analog to a bar with two
notches.
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Stress concentration

The analogy to flow

Picture that a fluid has to flow through
your structure.

In the areas where you have an
increase in fluid flow velocity you have
a positive stress concentration (local
increase in stress).

In areas where you have a decreased
fluid flow velocity you have a negative
stress concentration (a local decrease
in stress).
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=PFL  Stress concentration

= From Saint-Venant’s principle we also know that the
maximum stress in a structure and its relation to the
average stress is a function of geometry.

P
Omax — Kaave = K—

A

m K is the stress concentration factor and can be
determined experimentally or numerically

m K can be looked up in graphs or tables for
different geometries (be careful how the o, is
defined for that graph or table)
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Stress concentration

around a hole

3.0
25 ~_
K - \I :C/Z \.&
«—| b C| 4 A—s
20 1 .,
K= g:‘"—o"’m Onom= % t = thickness
15 . '
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Stress concentration ata
change in cross-section
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Example 2.9
@m B Stress concentration

r <
75 mm
A6 mm x 75 mm plate, 600 mm long, has a
circular hole of 25 mm diameter located at its
center. Find the axial tensile force that can
be applied to this plate in the longitudinal
direction without exceeding an allowable
stress of 220 MPa. How does the presence
of the hole affect the strength of the plate?

600 mm

3.0

25

Given: Dimensions of plate, limiting normal
stress.

Find: Allowable axial load that can be applied
to plate. Assume: Hole is only feature that

K= Gnom Cnom= & t=thickness causes a stress concentration.
15 ' '
0

20+

0.1 0.2 0.3 0.4 0.5

ola




=PFL Another use of treatment of bodies like
springs: Strain Energy.

= From the axially loaded bar we have seen the communality of the load
extension curve to the basic force extension curve of a spring

= We can now also apply this communality to energy stored in a stretched
spring or bar

Spring Axially
loaded bar
Hooke’ AFE
o N F =k Az P="—="3
Spring AFE
constant k k = A




=PFL  Strain Energyin one
Dimension

= We know from Hooke’s law that a solid material reacts to a load in a similar
way as a linear spring. The energy stored by a compressed spring is:

X

Uspﬁng:fﬂdx:kadx:lkxz.
2
0

0
= |n analogy, the strain energy stored in an elastic solid (strain energy per unit

volume) is then:

Uozfad&::fEsdszéEsz.
0 0
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Strain energy in one
dimension

= Area under the stress-strain curve: strain energy density (U,)
= Area “above” the stress-strain curve: complementary energy density (Uy)

A 4

18
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Strain Energy in one Dimension:
Thermal strain energy

= Thermal strains offset the stress-strain curve along the strain axis

UOzfo-dngE(s—ET)d€=%E(S—Er)z
Er €r

U, = %E&2 —Ee(aT)+ %E(ozT)2 o
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EPFL  The three governing physical
principles for structural mechanics

Newton 2: relates external forces to reactions

Equilibrium: relates external

. . Method of sections: relates external forces &
aArn forces, reactions, internal reactions to internal forces
S fo rces and StreSSGS Newton 2 & method of sections: relate internal

forces to stresses

Q Constitutive laws: relate stresses to strains

- Compatibility considerations: relates strains to
{7 displacements or deflections (i.e. kinematics)
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dN (x)
dx

+ > Pid(x — x;) + BpA(x) =0

Review: the three
equations

In structural mechanics, we (always) rely on
these 3 equations:

: ensures that all forces are
in equilibrium

: Relates two quantities with
materials specific properties.

: relates strain (¢) to
displacement (u):




EPFL  Review: stress strainin 1D ’

Learning objectives of chapter 2

Bars Calculate normal and shear stresses and strains in bars (“bar in tension formula”
Displacement Understand the concept of the displacement u(x) and how we derived the strain from this
Hooke Know Hooke’s law and how and when it applies
Sections Understand the method of sections and be able to solve structures with trusses in 2D
Forces Know what kind of forces can act on structures (interneal, external, distributed, body, etc...)

Supposition Understand and apply superposition principle

m 07.10.20
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Review: stress strainin 1D

Learning objectives of chapter 2

3 equations

Indeterminate
Systems

Thermal
St.Venant
Concentration

Energy

Know and apply the kinematic, constitutive, and equilibrium equations

Solve statically indeterminate systems with the displacement stiffness method

Know and solve problems involving thermal stresses

Understand Saint Venant’s principle and explain why it is important

Know and apply stress concentrations

Calculate strain Energy
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